Consider an ordinary differential equation of the form : dy/dt =2t+3 ,
Now we take the formula for dy/dt and crXXX XXXXXXXX so that all the t's are on XXX XXXX and all y's XX other.
So XXXX we have,
dy= (2t +X) dt
XXX XX XXXX to XXXXXXXXX both sides.
After integration XX XXX the XXXXXXXX as,
y=t^2 + 3t + X , XXXXX X XX XXX constant XX XXXXXXXXXXX.
Second one is XXXXXXXXXXX XXXXXX Method:
Here we have XX XXXXX XXXXX XXX XXXXXXXXXXXX XXXXXXXX in the XXXX: dy/dt+p(t)y=X(t)
Consider an example,
dy/dt+XX=X
Here p(t)=2 and q(t) =3
XXX we XXXX XX XXXX an integrating XXXXXX i.e. u(t)=e^(XXXXXXXX of p(t) dt)
i.e. e^{XXXXXXXX 2dt}= e^(2t)
XXX XX XXXX XX XXXXXXXX XXX whole XXXXXXXXXXXX XXXXXXXX with the integrating XXXXXX. i.e.
e^(XX) dy/dt+XX^(XX) y=3e^(XX) -----> (X)
XXX XXX XXXX hand side XXX be XXXXXXX as a XXXXX derivative i.e.
e^(2t)dy/dt+XX^(XX)y=(e^(2t)y)'
XXXXXXXXXXXX this in (1) we get,
(e^(XX)y)'=2e^(2t)
Now integrating both XXXXX XX get,
e^(XX)y=e^(2t)+X
i.e.
y=1+XX^(-XX) XX XXX XXXXXXXX XXXX constant C.