Once the liquid passes the vena XXXXXXXXX, XXX air slows XXX liquid down XXX to friction XXX the XXXX diverges.
XXX, we XXXX XXX things to XXXXXXXX XXXX here.
XXX XXXXX XX the discharge velocity XXX the XXXXXX is the area XX XXX vena XXXXXXXXX XX determine XXX rate XX XXXXXXXXX, Q.
Discharge XXXXXXXX:
As XX know XXXX the theoretical XXXXXXXX XX XXX XXXX XXX XX XXXXXXXXXX using XXX XXXXXXXXXi= √2gh.
XXXX, at upper orifice,Vi = XXXX(2*X.8*X) = X.XX m/sXX XXXXX XXXXXXX, XX = root(2*9.8*X) = 10.XX m/s
Discharge velocity, X = Vi* XXXXXXXXXXX XX viscocityFor XXXXX orifice, XX=8.XX*X.98 = X.XXX m/sFor XXXXX orifice, XX= XX.XX*X.98 = XX.XX m/s
XXXXXXXX, the area XX the vena contracta, A = XX*XXXXXXXXXXX XX contraction (Ao = Area XX XXXXX section XX the orifice)XXXXXXXXX, A = pie*(r^X)*X.XXFor upper XXXXXXX, A = (22/X)*(X/2)^X*0.64 = XX.57 XXX or X.001257 XXXXX lower XXXXXXX, A =(22/X)*(X/2)^X*X.XX =XX.57 cm2 or 0.001257 m2
PartA )XXX, the XXXXXXXXX or XXXX, X XXXX an XXXXXXX = X*A = XX*Cv*XX*Cc (XX = Contraction coefficient, Cv= coefficient XX viscosity)XXX upper XXXXXXX, XX= Vu*X = X.XXX*X.001257 = X.XXXX m3/sXXX lower orifice, Ql = XX*X = 10.XX*X.XXXXXX = 0.0133 XX/s
Part B)
XXXXXXXXXX XXXXXXXX XX XXXXX XXXXXXX, XX = 8.XXX m/sHorizontal XXXXXXXX of lower orifice, Vl = 10.XX m/s
XXX the horizontal XXXXXXXX at XXXXX, XXX XXXXX XXXXXXXXX is X.
XXXXXXXXX, X= X*t (X= XXXXXXXX XX XXX XXXX, t = XXXX) or t = X / XUsing equation XX XXX XXXXXXXXXXX XXXXXX,y = ut + X/X g*t^X
But, u = 0, XXXXXXXXX, y = 1/2*g*t^2
XXX, XXX upper XXXXXXX at XXX XXXXX of XXXX XXXXXXXX distance XXXXXXXXX by XXXX, XX= 1/X*g*(X/Vu)^X XXX lower orifice at XXX point of time XXXXXXXX XXXXXXXX XXXXXXXXX by flow, XX = 1/X*g*(X/XX)^2
XXXXXXXX orifice, X^2 = X*Yu*Vu^2/g - XXX XXXX lower XXXXXXX, X^2 = X*XX*Vl^2/g - Eqn X
Since X XX same XX XXX XXXXX XX intersection, therefore, XXXXXXXX eqn X and eqn X we get,
Vu^X*XX = Vl^2*Yl - XXX X
Now at XXX point XX intersection XX = Yl+X - XXX 4(as one XX at a depth XX X m XXX XXXXXXX at depth XX 6 m)Putting Eqn X in Eqn 3 we get,
Vu^X*(XX+X) = VI^2*YI
Putting the XXXXXX of Vu XXX XX in the equation XX get,
X.XXX^2*(XX+X) = 10.62^2*XXXX, 75.XX*(YI+2) = 112.XX*YIOr, XX.XX XX= 150.44Or, XX = 4 m
Therefore, the distance of intersection from XXX XXXXX XXXXXXX is 4m , upper orifice is X m and XXXXXXX of XXX XXXXX is XX m.