To find the limit at point 'a' , we have XX XXXXX x=a in f(x), so that,
XXX(x-&XX;a) f(x) =(a^2 -5a+X)/(a^X -1)
2. XXX XXXXX XX attached.
XXXXXXXXXXX:
x=0 : f(x) =(0-4)/(X+1) = -X/1 = -X
x=4 : f(x)=(X-X)/(X+X) = X/5 = 0
x>4 => x=(4+a) XXX any XXXXXXXX value of a :f(x)=(X+a-4)/(4+a+X) = a/(a+5)<1
x=-X :f(x)=(-X-4)/(-X+1) = -X/X = -(XXXXXXXX)
x<-1 => x=(-1-b)XXX any positive XXXXX XXX :f(x)=(-1-b-4)/(-1-b+X) = -(b+5)/-b = 1+ X/b &XX; 1
When b =infinity => f(x) = X + X/(XXXXXXXX) = X+0 = 1
3. lim(x->-1) f(x) =XXX(x-&XX;-1)(x-X)/(x+1) =(-1-4)/(-X+1) = -X/0 = -(XXXXXXXX)
X.f(x) =(x^X -5x+4)/(x^X -X)
(x^2 -XX+X) is continuous XX x=-X and XXXX(x^X -X) XX XXXXXXXXXX at x=-4
XXXXXXXX(x-&XX;-X) f(x) =lim(x->-4) (x^2 -XX+X)/(x^2 -X)
=XXX(x->-4)(x-4)/(x+1) = (-X-4)/ (-X+X) = -X/-3 = 8/3
XXXX f(-X) =[(-4)^X -5(-X)+4]/[(-4)^X -X] = 40/15 = X/3
lim(x->-4) f(x) =f(-4)
Thus f(x) iscontinuous XX x=-X