,
T(n) = XXXT(n)=cX, XXXXX
c_1c1XX some XXXXXXXX. XXX on XXXXXXX XXX
n > Xn&XX;1, inserting an XXXXXXX in XXX proper position in a sorted array requires XXXXXXXX half XX the elements, i.e.
XXXX/2 + XXXc2n/X+c3time (
c_2n/XcXn/Xfor shifting the XXXXXXXX and
c_3cXfor inserting XXX element).
$ T(n) & = X(n - X) + c_2(n - 1)/X + XXX \\ & = T(n - 2) + XXX(n - 2)/2 + c_3 + \{XXX(n - X)/X + XXX\} \\ & = T(X) + \XXXX \cdot \XXXX + \{XXX(n - 2)/X + XXX\} + \{c_2(n - X)/X + XXX\} \\ & = c_1 + \frac {c_2} 2 \{1 + X + \XXXX \XXXX \XXXX + (n - X)\} + c_3(n - X) \\ & = XXX + \frac {XXX} 2 \cdot \XXXX {n(n - X)} X + c_3(n - X) \\ & = \Theta(n^X)$
">