Preview 50% of the Answer Below
Answer Preview
A(t)=?
The form XXX exponential XXXXXXXXX is: X(t) = X * e^(r * t)
We XXXX XXXX XXX XXXXXX XX these XXXXXXXXX/XXXXXXXXX: P, r
XXXX question gives initial XXXXXXXXXX. XXX initial year, t0 = 0 (XXXX corresponds XX XXXX), and the XXXXXXX XXXXXXX A(t
We use these initial conditions XX solve for the constant P:
- XXXX in 0 XXX t : X(X)
- XX XXX the general XXXX A(t) = P * e^(r * t)
- X(0) = X * e^(r * X)
- X(X) = P * e^0
- X(0) = P * X
- A(X) = X
- XX know, XXXX XXXXXXX, XXXX X(X) = 54.X billion
- XX now have two XXXX XX represent X(X)
- A(X) = P
- X(X) = XX.5
- Thus X = XX.5
Now XXXX we XXXX what P XX, all we need XX find is r.
XX start with X(t) = P * e^(r * t). XXXX XXXXXX it with the value XX P XX XXXX XXXXX.
A(t) = (XX.5) * e^(r * t)
Now there XX another condition XXXX is given: XX XXXX, Apple made $XX.X XXXXXXX. Let t = 2 (corresponds to XXXX, X XXXXX XXXXX 2013), then A(2) = 74.6 billion.
XXXX XXX this XX XXXXX XXX r:
- XXXX in X XXX t : X(2)
- XX XXX A(t) = (54.5) * e^(r * t)
- X(X) = (XX.X) * e^(r * 2)
- X(2) = (XX.5) * e^(XX)
- XX XXXX XXXX XXXX earlier that A(X) = XX.6 XXXXXXX
- We XXX know two ways to XXXXXXXXX X(X)
- A(2) = (XX.X) * e^(2r)
- A(2) = XX.X billion
- Thus 74.6 = (54.X) * e^(2r)
- Solve XXX r
- XX.6 = (54.X) * e^(XX)
- /XX.5 = /54.X
- (74.X/54.5) = e^(XX)
- XX( XX.X/54.X ) = XX( e^(2r) )
- XX( 74.X/XX.5 ) = XX
- /2 = /X
- XX( 74.6/54.X )/2 = r
- Thus r = ln( XX.X/XX.X )/2 = 0.15696990277
XXXX constant r, represents the XXXXXXXXXX XXXXXX rate XXX year XX XXXXXXX. XX convert to XXXXXXXXXX, XX.XXXXXXXXX % XXX XXXX round XX three XXXXXXX XXXXXX: XX.7%.
XXXX we have A(t) = XX.5 e^(0.XXX t).
XXXXXX XXX me know if you have any other questions 😊 Good XXXX!
">